如何正确调整舵机和连杆

许多爱好者在调整飞机时,特别是初学者,往往会忽略了舵机和连杆调整的细节,尤其是采用高档遥控器,认为只要连杆和舵机连接上了,后面就全用遥控器来调整,最后舵面上下能“停”在要求的位置就可以了。其实这种忽略“过程”的“潇洒”调整必定会使飞机的操纵性能下降,还“浪费”了舵机宝贵的控制精度。

首先,是要尽可能多的利用舵机的控制精度。

我们可以从一些遥控器的型号中了解到遥控器的精度,如PCM1024 就表明该设备是10位精度的,其内部的AD转换精度是10位,能将参考电压分成210份……(这么一直说下去太难理解,也就能蒙蒙专业人员,下面按普通话说……)

“1024”的意思就是将操纵杆的行程等分为1024个位置,并给每个位置排一个编号,如将操纵杆推到最上面的位置叫“0”,把向下的一个位置叫“1”,把再向下的一个位置叫“2”……以此类推,操纵杆推到最下面的位置叫“1023”,共1024个位置。这样操纵杆的每一个位置就都有了一个“名字”,发射机只需要将一个位置的“名字”通过接收机告诉舵机,舵机就可以根据这个“名字”把舵机摇臂转到相对应的角度了。对于舵机来说,一般舵机的旋转范围是±45度,如果发射机的精度还是1024,则舵机就是按±45度得范围等分成1024个位置,简单做一下除法可以计算出舵机的理论最小分度是:90度/1024≈0.09度,这就是舵机的理论精度。

精度的概念理解起来有点像“大楼和电梯”。一栋大楼被分成许多“层”,也就是“位置”,每一层都有一个“名字”,如“五层”、“八层”等等,而电梯就好比舵机,他只会停在一层的整数倍上,如1的2倍的“二层”、1的16倍的“十六层”,而不会停在两层的中间。同样,一但精度和起始位置确定了,舵机也只会停在“精度”的整数倍上。如果精度还是0.09度,则舵机只会停在0度、0.09度、0.18度……9.09度……的位置。如果放大来看,舵机其实是在“一格一格”地转动。

但刚才所说的还都是舵机的理论精度,实际使用时舵机多少都会受到阻力,由于受到的阻力和舵机内部控制规律共同作用,舵机的实际控制精度要低很多,这点在非数字舵机和小扭力舵机上尤为明显。虽然无法定量分析,但可以做一个简单的实验加以验证:将舵机连接到接收机的任一通道,接通发射机和接收机的电源,用手慢慢转动舵机摇臂,随着用力的加大,会发现虽然舵机会产生很大的反扭力,但摇臂还是会稍稍偏离原来的位置,这时偏离的角度就是舵机当前状态的实际精度,这已远远大于理论精度了。

前面我们了解到舵机的控制精度,现在就要想方设法来尽可能多的利用其精度,来达到最好的控制效果。其实道理也很简单,只要让舵机满行程工作就可以了。

假如舵面要求的偏转角度是±10度,则需要调整舵机摇臂和舵面舵角的使用长度,使舵机±45度的偏转范围对应到舵面的±10度的偏转范围。舵机达到满行程工作,这样不仅没有损失控制精度,同时还减轻了舵机的负荷。

其次,航模舵机的中立位置不一定要调整到舵面的“零”位。

要具体情况具体分析。以直升机的总距(旋翼迎角)的调整为例,直升机在飞行时需要靠旋翼产生的升力来抵消飞机自身的重量。这就使得直升机在悬停时的旋翼迎角不为零,一般在5~5.5度。而在普通飞行状态的最大迎角和最小迎角分别是10~11度和-2~-5度(在3D飞行中正负迎角基本是相同的,这种特技飞行对操纵者的控制技术要求很高,这里就不作详细论述了)。如果这时还将舵机的中立位置调整到旋翼的0度迎角,再通过调整遥控器的“行程设置”功能,将舵机的正行程限制到10度迎角位置,负行程限制到-2度迎角位置,就会产生两个问题:一是迎角的控制精度下降;二是舵机的动作不均匀。

还以PCM1024设备为例,理论上旋翼在0~10度偏角范围和0~-2度偏角范围都各应有512个分度,但经过上述调整后,如果保证0~10度偏角一侧有512个分度,则在0~-2度偏角一侧就只剩下 512 ╳ 2/10 = 102.4个分度了,一下少分了400多格,总距控制精度降低了80%!原因就在当改变舵机行程时,舵机的原有精度是不变的,缩减行程只是把多余的分度“砍”掉了,而不是把分度“压缩”。

这就导致了第二个问题的产生——舵动作不均匀。由操纵杆杆量与旋翼迎角曲线可以看出,在正偏角一侧,使舵面增加一度所改变的杆量,比在负偏角一侧增加一度所改变的杆量大。从曲线的斜率可以很容易看出这一点。

发表评论

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: